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ABSTRACT: A three-component [2+2+1] cross-cyclo-
trimerization of carboryne, alkene, and trimethylsilylalkyne
has been achieved under the cooperative action of
zirconium and nickel, leading to the synthesis of a series
of dihydrofulvenocarboranes. The bulkiness of the alkyne
and phosphine ligand plays a key role in the selective
formation of the products.

T ransition-metal-mediated/catalyzed [2+2+2] cyclotrimeri-
zation of alkynes/alkenes serves as a very powerful
strategy for the synthesis of substituted cyclic compounds.' The
challenge in this field of research is how to control the
chemoselectivity in the intermolecular [2+2+2] cyclotrimeriza-
tion of different components. A few successful examples have
been reported via either pre-installed functionalities in alkynes”
or unsymmetrical zirconacyclopentadiene intermediates.® In
view of the growing interest in apphcatlons of carborane
derivatives in boron neutron capture therapy,* supramolecular
design,’ catalysis,® and materials,” we extended such a [2+2+2]
protocol to include carborynes (1,2-dehydro-o-carboranes® and
1,3-dehydro-o-carboranes,” which can be viewed as a three-
dimensional relative of benzyne) to develop a toolbox for the
synthesis of a variety of functionalized carboranes from readily
available starting materials via a simple operation.'’

Subsequently, nickel-mediated/catalyzed two-component
[2+2+42] cross-cyclotrimerization of carboryne with alkynes
was developed in our laboratory.'' Furthermore, through
cooperative mediation by both Zr and Ni, we achieve a three-
component [2+2+2] cross-cyclotrimerization of o-carboryne
with two different alkynes or with one alkene and one alkyne
(Scheme 1).'*" During the course of this study, an
unprecedented dihydrofulvenocarborane, E-Sa, was isolated
together with the expected dihydrobenzocarboranes from the
reaction of zirconacyclopentane 1,2-[Cp,ZrCH,CH("Bu)]-1,2-
C,BoH,y (1) with TMS—=—Ph (3a) in the presence of
NiCl,(PMe,), (Table 1). Compound E-5a obviously resulted
from a three-component [2+2+1] cyclotrimerization of
carboryne, alkene, and alkyne (Scheme 1). We were intrigued
to investigate such a brand new [2+2+1] reaction, and the
results are reported in this Communication.

We screened various reaction conditions for the reaction of 1
with 3 equiv of TMS—=—Ph (3a) in the presence of 1 equiv
of nickel complex NiCl,L,. The results were summarized in
Table 1. All nickel(II) complexes examined could effectively

-4 ACS Publications  © 2013 American Chemical Society

Scheme 1. Transition Metals Co-mediated Cross-
cyclotrimerization
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Table 1. Optimization of Reaction Conditions®

"By 1) N[C12L2

2)TMS Ph(3a)
Zr solvent
Cpz 48 h
E 5a

1

entry ligand (L,) solvent T [°C] conversion [%]b 4a/4'a/E-5a°

1 PMe, toluene rt. 96 35/1/64
2 PMe, Et,O0 r.t. 90 33/1/66
3 PMe, THEF 407 93 35/1/64
4 PMe, DME 407 97 35/1/64
s PMe, CHCl,  rt 88 42/2/56
6 PPh, toluene rt. 95 92/4/4

7 P"Bu, toluene r.t. 73 35/4/61
8 PMe,Ph toluene r.t. 87 50/1/49
9 PMePh, toluene r.t. 94 50/3/47
10 dppe toluene r.t. 0 none

“Reaction conditions: 1 (0.05 mmol), [Ni] (0.05 mmol), and 3a (0.15

mmol) in 0.6 mL of solvent in a closed vessel, 48 h. *GC yield.
“Determined by GC-MS. “No reaction was observed at room
temperature.

mediate this reaction in common organic solvents in very good
to excellent conversions but with different molar ratios of 4a/
4’a/E-Sa. In general, the formation of 4’a could be neglected
due to the polarity of 3a regardless of phosphines used. On the
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Table 2. Synthesis of Dihydrofulvenocarboranes®
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’ U (z-si) (E-5v)
10 "B (3) 50 23 B X (3m) e
’ = (Z-5j) ) . (E-5w)
| |
S 80¢ s 71
11 "Bu A o~ (3k) 24 Bu (3i)
(5kE/Z =1:5) (Z-5x)
‘NI‘N |
F F 71¢ Y 49
12 "Bu (31) 25  CH:OMe (3m)
F F (S1E/Z=2:1) (E-5y)
F
L 7 v 64
13 "Bu (3m) 26 CH:NMe: (3m)
(E-5m) (E-5z)

“Reaction conditions: 1 (0.5 mmol), NiCl,(PMe;), (0.5 mmol), and 3 (1.5 mmol) in 10 mL of toluene in a closed vessel, 48 h. “Isolated yields. °E/
Z ratio was determined by GC-MS with authentication. “Reaction was heated at 110 °C.

other hand, triphenylphosphine offered an excellent selectivity
for 4a, whereas trimethylphosphine gave the best selectivity for
E-Sa (entry 6 vs 1, Table 1). In view of E-Sa’s selectivity,
conversion rate, and reaction temperature, entry 1 in Table 1
was chosen as the optimal reaction conditions.

A variety of trimethylsilylalkynes were examined under the
chosen optimal reaction conditions, and the results are
compiled in Table 2. Ortho-substituents on arenes played a

18743

crucial role in the formation of 5. When R* in TMS—=—R?
was changed from phenyl to o-tolyl to o-isopropylphenyl, the
isolated yield of § was increased from 46% to 72% to 81% at
the expense of E/Z selectivity, from only E isomers for Sa and
5b to E/Z = 1:3 for Sc. Such E/Z selectivity was dependent not
only on the relative size of TMS/R* (entries 1—4, Table 2) but
also on the nature of R* (entry 8, Table 2). Ortho-substituents
bearing donor functionality favored the formation of E isomers
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(entry 3 vs 8 and entry 9 vs 11, Table 2) owing to the possible
coordination of the heteroatom to the Ni center. For 2,6-
disubstituted aryls 3i and 3j, only Z isomers, Z-Si and Z-§j,
were isolated in >80% yield because of steric reasons (entries 9
and 10, Table 2). In the case of pentafluorophenyl substituent,
both E- and Z-isomers were formed, with E-51:Z-51 = 2:1, as the
F atom is bigger than a H atom and smaller than a CH; group
(entry 12, Table 2). The E- and Z-selectivity was reversed for
3m and 3n owing to steric reasons (entries 13 and 14, Table 2).

This reaction was compatible with heteroaromatics such as
30 and 3p, affording E-S0 and E-Sp in relatively low yields
(entries 15 and 16, Table 2). Alkyl alkyne TMS—=—"Bu
(3q) gave E-5q in only 4% isolated yield with [2+2+2] cross-
cyclotrimerization compound dihydrobenzocarborane as the
major product (entry 17, Table 2). On the other hand,
bis(trimethylsilyl)acetylene (3r) offered 100% selectivity of Sr
with 35% conversion rate at 110 °C, whereas no reaction was
observed for R* = Et,Si or ‘BuMe,Si even under forced reaction
conditions (entries 18—20, Table 2), suggesting the importance
of steric effects in this reaction.

Effects of R! on reaction results were also examined. For R =
CH,Ph and By, products with single isomer E-Sv, E-5w, and Z-
Sx were obtained in high yields, which is very compatible with
those of R' = "Bu (entries 22—24 vs 9 and 13, Table 2). If R*
contains heteroatom such as CH,OMe and CH,NMe,, single
isomers E-Sy and E-S5z were isolated in relatively low yields
(entries 25 and 26, Table 2) probably owing to the interaction
of the heteroatom with the metal center. Replacement of R' =
"Bu by H resulted in the loss of the chirality, preventing the
formation of diastereoisomers (entry 21, Table 2; also see
Supporting Information). It was noted that a small amount of
dihydrobenzocarboranes (4) was observed as minor products in
most of reactions, which were formed via [2+2+2] cyclo-
addition reaction as shown in Scheme 1."

Compounds § were fully characterized by 'H, *C, and "'B
NMR spectroscopy as well as high-resolution mass spectrom-
etry. The molecular structures of E-Sablp, Z-5d,iu, and Sr
were further confirmed by single-crystal X-ray analyses. Figure
1 shows the representative structures of E-Sb and Z-5d.

Figure 1. Molecular structures of E-Sb (left) and Z-5d (right).

As the above [2+2+1] cross-cyclotrimerization'* works only
for trimethylsilylalkynes, and such alkynes are known to react
with nickel complexes to give nickelvinylidene species,"*" 162
plausible reaction mechanism is thus proposed in Scheme 2.
Transmetalation of zirconacycle to nickel generates the
corresponding nickelacyclopentane."® Coordination of alkyne
to the nickel and 1,2-trimethylsilyl shift gives a nickelvinylidene
intermediate A. Migratory insertion of the vinylidene carbene

forms intermediate B. Reductive elimination affords the final

Scheme 2. Proposed Reaction Mechanism
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product 5. The E/Z selectivity (configuration of alkenes in 5) is
dominated by the relative size of R>/TMS. If R> > TMS, Z-
configuration is favored; otherwise, E-isomers are the major
products. On the other hand, E-configuration is favored if R*
bears a donor atom that can coordinate to the Ni atom. As this
reaction can be done in one pot starting from o-carborane, it is
rational to view this as an equivalent to three-component
[2+2+1] cross-cyclotrimerization of carboryne, alkene, and
alkyne mediated by transition metals.

In summary, we have developed a novel transition-metal-
mediated three-component [2+2+1] cross-cyclotrimerization
reaction for the preparation of a series of dihydrofulvenocarbor-
anes. In view of the demonstrated similarities between metal—
benzyne and metal—carboryne complexes,'® it is anticipated
that a similar benzyne analogue might undergo the same type of
reactions. This work may also shed some light on how to
control chemoselectivity among alkenes and alkynes in
chemical transformations.
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Detailed experimental procedures, complete characterization
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